Genetic Ensemble (G-Ensemble) for Meteorological Prediction Enhancement

نویسندگان

  • Hisham Ihshaish
  • Ana Cortés
  • Miquel A. Senar
چکیده

The need for reliable predictions in environmental modelling is long known. Particularly, the predicted weather and meteorological information about the future atmospheric state is crucial and necessary for almost all other areas of environmental modelling. Additionally, right decisions to prevent damages and save lives could be taken depending on a reliable meteorological prediction process. Lack and uncertainty of input data and parameters constitute the main source of errors for most of these models. In recent years, evolutionary optimisation methods have become popular to solve the input parameter problem of environmental models. We propose a new prediction scheme that uses a Genetic Algorithm for parameter estimation in Numerical Weather Prediction Models (NWP) to enhance prediction results. The new approach is called Genetic Ensemble (GEnsemble) and it has been tested using historical data of a well known weather catastrophe: Hurricane Katrina that occurred in 2005 in the Gulf of Mexico. Obtained results provide significant improvements in weather prediction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of ensemble learning techniques to model the atmospheric concentration of SO2

In view of pollution prediction modeling, the study adopts homogenous (random forest, bagging, and additive regression) and heterogeneous (voting) ensemble classifiers to predict the atmospheric concentration of Sulphur dioxide. For model validation, results were compared against widely known single base classifiers such as support vector machine, multilayer perceptron, linear regression and re...

متن کامل

Parallel Multi-level Genetic Ensemble for Numerical Weather Prediction Enhancement

The need for reliable predictions in environmental modelling is well-known. Particularly, the predicted weather and meteorological information about the future atmospheric state is crucial and necessary for almost all other areas of environmental modelling. Additionally, right decisions to prevent damages and save lives could be taken depending on a reliable meteorological prediction process. L...

متن کامل

Enhanced Predictions of Tides and Surges through Data Assimilation (TECHNICAL NOTE)

The regional waters in Singapore Strait are characterized by complex hydrodynamic phenomena as a result of the combined effect of three large water bodies viz. the South China Sea, the Andaman Sea, and the Java Sea. This leads to anomalies in water levels and generates residual currents. Numerical hydrodynamic models are generally used for predicting water levels in the ocean and seas. But thei...

متن کامل

Can a multi-model approach improve hydrological ensemble forecasting? A study on 29 French catchments using 16 hydrological model structures

An operational hydrological ensemble forecasting system based on a meteorological ensemble prediction system (M-EPS) coupled with a hydrological model searches to capture the uncertainties associated with the meteorological prediction to better predict river flows. However, the structure of the hydrological model is also an important source of uncertainty that has to be taken into account. This...

متن کامل

Fault Detection of Bearings Using a Rule-based Classifier Ensemble and Genetic Algorithm

This paper proposes a reduct construction method based on discernibility matrix simplification. The method works with genetic algorithm. To identify potential problems and prevent complete failure of bearings, a new method based on rule-based classifier ensemble is presented. Genetic algorithm is used for feature reduction. The generated rules of the reducts are used to build the candidate base...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011